Scaling, proximity, and optimization of integrally convex functions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scaling and Proximity Properties of Integrally Convex Functions

In discrete convex analysis, the scaling and proximity properties for the class of L-convex functions were established more than a decade ago and have been used to design efficient minimization algorithms. For the larger class of integrally convex functions of n variables, we show here that the scaling property only holds when n ≤ 2, while a proximity theorem can be established for any n, but o...

متن کامل

On the Relationship between L-convex Functions and Submodular Integrally Convex Functions

This paper shows the equivalence between Murota’s L-convex functions and Favati and Tardella’s submodular integrally convex functions: For a submodular integrally convex function g(p1, . . . , pn), the function g̃ defined by g̃(p0, p1, . . . , pn) = g(p1 − p0, . . . , pn − p0) is an L-convex function, and vice versa. This fact implies, in combination with known results for L-convex functions, tha...

متن کامل

Proximity theorems of discrete convex functions

Aproximity theorem is astatement that, given an optimization problem and its relaxation, an optimal solution to the original problem exists in acertain neighborhood of asolution to the relaxation. Proximity theorems have been used successfully, for example, in designing efficient algorithms for discrete resource allocation problems. After reviewing the recent results for $\mathrm{L}$-convex and...

متن کامل

Optimization of Convex Risk Functions

We consider optimization problems involving convex risk functions. By employing techniques of convex analysis and optimization theory in vector spaces of measurable functions we develop new representation theorems for risk models, and optimality and duality theory for problems with convex risk functions.

متن کامل

Beyond Convex Optimization: Star-Convex Functions

We introduce a polynomial time algorithm for optimizing the class of star-convex functions, under no Lipschitz or other smoothness assumptions whatsoever, and no restrictions except exponential boundedness on a region about the origin, and Lebesgue measurability. The algorithm’s performance is polynomial in the requested number of digits of accuracy and the dimension of the search domain. This ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Programming

سال: 2018

ISSN: 0025-5610,1436-4646

DOI: 10.1007/s10107-018-1234-z